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A B S T R A C T   

Despite its proven record as a breast cancer screening tool, mammography remains labor-intensive and has 
recognized limitations, including low sensitivity in women with dense breast tissue. In the last ten years, Neural 
Network advances have been applied to mammography to help radiologists increase their efficiency and accu-
racy. This survey aims to present, in an organized and structured manner, the current knowledge base of con-
volutional neural networks (CNNs) in mammography. The survey first discusses traditional Computer Assisted 
Detection (CAD) and more recently developed CNN-based models for computer vision in mammography. It then 
presents and discusses the literature on available mammography training datasets. The survey then presents and 
discusses current literature on CNNs for four distinct mammography tasks: (1) breast density classification, (2) 
breast asymmetry detection and classification, (3) calcification detection and classification, and (4) mass 
detection and classification, including presenting and comparing the reported quantitative results for each task 
and the pros and cons of the different CNN-based approaches. Then, it offers real-world applications of CNN CAD 
algorithms by discussing current Food and Drug Administration (FDA) approved models. Finally, this survey 
highlights the potential opportunities for future work in this field. The material presented and discussed in this 
survey could serve as a road map for developing CNN-based solutions to improve mammographic detection of 
breast cancer further.   

1. Introduction 

In the US, approximately one in eight women are diagnosed with 
breast cancer in their lifetime. Breast cancer is the most common non- 
cutaneous cancer diagnosed in women: in 2020, researchers predict an 
estimated 276,480 women are diagnosed, of whom they expect 42,170 
to die [1]. Worldwide, breast cancer is the most common non-cutaneous 
cancer in women, with over two million annual diagnoses [2] . 

Scientists developed screening mammography to provide early 
detection and to save lives from breast cancer. Observational studies 
show a mortality reduction of about 40% [3,4] after mammography 
screening. Screening mammography does, however, have limitations. 
Clinicians will recommend about 15 in 1000 women screened with 
mammography for a needle biopsy, and 10 to 13 of those biopsies will 
show that cancer is not present (false positives) [5]. Kuhl et al. [6] 
highlight one major limitation of mammography screening: 

prognostically significant breast cancers are underdiagnosed. 
Researchers and clinicians have implemented several strategies to 

improve screening mammography’s performance, including double- 
reading, screening at yearly interval [7], obtaining two views per 
breast [8], and analyzing prior mammograms for comparison [9]. Ra-
diologists aim to detect critical features like microcalcifications (MCs), 
architectural distortions (ADs), and asymmetries as biomarkers for 
cancer or cancer risk. Manually detecting these features leads to addi-
tional economic costs and strains on an already scarce breast imaging 
radiologist workforce [10]. Computer-aided detection systems (CAD) 
emerged in the 1990s to automatically detect and classify breast lesions 
in mammograms. Still, these traditional CAD systems fail to significantly 
improve screening performance, mainly due to their low specificity [11, 
12]. Specificity connects to how well algorithms detect and classify 
abnormalities in mammograms. This differs from diagnosis, which in-
volves causal inference regarding an abnormality’s origin. Detecting 
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anomalies in mammographs is essential. 
Recently, Trister et al. [13] report that novel algorithms based on 

Convolutional Neural Networks (CNNs) improve screening mammog-
raphy’s performance and increase breast imaging radiologists’ effi-
ciency. Researchers have developed several CNN-based algorithms for 
automated mammographic analysis, some of which the US Food and 
Drug Administration (FDA) has approved [14]. 

1.1. Survey objectives 

This article aims to present a comprehensive and critical analysis of 
recent literature on CNN applications to mammography. Prior surveys 
broadly scope Deep Learning CAD for breast cancer [15–18]. However, 
our survey reevaluates the present landscape with a focused structure on 
mammography; it examines the background of foundational CNN ar-
chitectures before highlighting recent CNN-based methods on 
mammographic data. This paper further offers a systematic analysis of 
the latest advances in supervised, unsupervised, and semi-supervised 
learning by first reviewing fundamental and commonly-cited computa-
tional concepts in the CNN CAD-mammography domain. Previous sur-
veys [16] have aggregated modalities ranging from MRIs to histology 
samples or focus broadly on statistical methods [17]; our survey presents 
CNN applications focused on mammography literature. It is the first 
survey to break down and evaluate papers as they address four distinct 
mammographic tasks: (1) density classification and (2) asymmetry 
detection and classification for risk assessment and (3) calcification 
detection and classification, and (4) mass detection and classification for 
cancer diagnosis. The survey explicitly lists recent CAD challenges for 
mammography and calls for future scientists to address these issues 
through open areas for research. 

After analyzing completed works encompassing these four tasks, this 
paper presents a quantitative comparison of reported results from the 
literature; this analysis allows us to point out open areas for additional 
research. This article further shows how many of the CNN insights in 
academia have translated into commercial, FDA-approved devices used 
by thousands of radiologists in the clinic. 

1.2. Article selection criteria 

We screen for articles published in English between 2011 and 2020 
on developing CNNs for mammography, including those presenting 
available datasets or composing CNNs for mammography. We search for 
articles through PubMed, Institute of Electrical and Electronics Engi-
neers (IEEE), and Google Scholar databases. Moreover, we reference 
articles on the subject that were published in English before 2011 for 
background context. 

1.3. Survey topology 

First, traditional CAD systems’ history is presented in Section 1. CNN 
architecture and core concepts for training CNNs are discussed in Sec-
tion 2. In Section 3, available mammography datasets are presented. 
Then, algorithms developed for the four tasks mentioned above are 
critically analyzed in Section 4. We discuss quantitative results for these 
in Section 5. The pros and cons of the CNN-based approaches are dis-
cussed in Section 6. How these findings translate into FDA-cleared Deep 
Learning-based CAD systems is presented in Section 7. Finally, open 
areas for research on these subjects are presented in Section 8. 

2. Traditional CAD systems 

Researchers first implemented CAD systems in the 1990s based on 
conventional machine learning models to find or localize abnormal or 
suspicious regions and alert clinicians for attention [19]. CAD’s primary 
goal is to increase the detection rate of diseased regions while reducing 
the false-negative rate, possibly due to observers’ mistakes or fatigue. 

CAD for breast cancer detection uses different types of clinical 
medical imaging. Images range from X-ray based mammography to ul-
trasounds and magnetic resonance imaging (MRI). For this article, we 
choose mammography for extensive review. Mammography is the most 
common type of breast cancer screening method: over 65% of women 
over 40 have had at least one mammogram within two years after 2017 
[20]. After doctors find anomalies in a mammogram, they order 
different imaging techniques, such as an MRI [21]. For high-risk in-
dividuals or those with apparent masses in their radiograms, physicians 
call for a more invasive histological image analysis [21]. Mammograms 
are, in comparison, minorly-invasive. Because it is a first-line screening 
method, mammographic analysis merits significant improvement with 
CAD methods. 

The traditional CAD pipeline, as Fig. 1 shows, is: 1) Algorithms first 
detect candidate regions through image processing techniques that often 
rely on an exhaustive set of handcrafted features (texture, shape, gray- 
level intensity) that experts spend painstaking hours to extract (Fig. 1 
A). 2) They then construct a morphological or statistical set of features 
representing the candidate regions (Fig. 1 B). 3) A statistical classifier 
uses the engineered features to output a probability of, or predict, a 
disease state (Fig. 1C and D). Recently, researchers have exchanged 
traditional CAD for CNN-based methods [22]. Before Deep Learning and 
CNNs’ popularity, Support Vector Machine (SVM), Random Forest (RF), 
and other statistical methods [23,24] were popular, yet their reliance on 
time-intensive feature engineering has propelled researchers towards 
CNN-based methods, or hybrid methods combining statistical models 
with CNN models [25]. 

3. Deep convolutional neural networks 

CNNs are powerful for analyzing images because pattern-specific 
filters can preserve the picture’s spatial features. CNNs often outper-
form dense neural network methods because fully connected architec-
tures flatten input images, overlooking vital spatial patterns. Fig. 2 
details the CNN architectures, and Fig. 2 A) highlights how CNN-based 
methods rely heavily on end-to-end learning. CNNs emphasize raw input 
data with minimal feature engineering for mammographic classifica-
tion, among other tasks. Pattern-specific feature maps generate feature 
maps; shallow layers in the network detect features resembling the input 
image, but deeper layers detect abstract patterns, as shown in Fig. 2 B). 
One filter may pick up vertical lines in a picture, while another spe-
cializes in seeing horizontal lines. Depending on the task, feature maps 
can be flattened into dense (fully-connected) layers for classification 
tasks. AlexNet [26] popularized CNNs by applying them to the ImageNet 
challenge, reaffirming their strong performance on large, 
high-resolution image datasets even at low numbers of parameters. 
Since then, researchers successfully use these base architectures for 
mammographic image segmentation and classification. The following 
sections detail key CNN components and their applications to 
mammography CAD. 

3.1. Optimizers 

In order to numerically minimize model loss functions with back-
propagation, research rely on optimizers. Backpropagation (as shown in 
Fig. 2 A) updates model weights based on errors relative to ground truth 
images (the Loss in Fig. 2 C). Researchers have used various optimizers, 
like stochastic gradient descent (SGD) [27], the adaptive gradient al-
gorithm (AdaGrad) [28], and adaptive moment (Adam) [29]. In prac-
tice, researchers [30–34] still use the classic SGD, although dynamic 
optimizers like Adam are becoming increasingly popular [31,33,35–40]. 
Adam dynamically updates the learning rate using gradient momentum. 

3.2. Max and average pooling 

Large feature map channels with basic convolutional models yield 
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slow and computationally expensive training. To resolve this issue, re-
searchers apply max and average pooling to the output of convolutional 
layers. Max-pooling takes a 2D window’s maximum pixel value, whereas 
average pooling takes a 2D window’s average of all pixel values. Pooling 
summarizes feature maps into encodings with reduced dimensions, as 
shown in Fig. 2 by the dark orange tensors. These operations reduce the 
number of trainable parameters to mitigate overfitting and computation 
time. 

3.3. Activation functions 

Activation functions are at the core of CNNs, as they introduce non- 
linearity to the neuronal output. Sigmoidal activation functions are 
typically used at the final classifier layers by researchers in mammog-
raphy CAD [41–43], specifically for binary classification tasks, but also 
have applications in segmentation networks. In practice, researchers use 
the SoftMax [44] function for multiclass problems, and the final purple 
layer in Fig. 2 A) shows a typical SoftMax layer implementation. The 
ReLU activation function [45] is extremely efficient, as it involves 

Fig. 1. The Traditional CAD process. A) Researchers handcraft features describing the image. B) Correlation matrices and other filtering is used to select relevant 
features. C) A statistical model uses the cleaned features to then D), make inferences, as in the receiver operator curve. Best in color. 

Fig. 2. A) CNN Architecture and Model Learning. Multiple filters generate different feature maps, shown as stacks of orange. The dark orange represents output after 
pooling. The architecture also flattens the layers into vectors (purple) before classification. The model updates the feature map parameters based on the loss function 
(which can be a measure for error) through backpropagation. The feature maps are shown growing in width as they are stacked after each convolution along the x- 
axis. This figure was partially generated with the PlotNeuralNet GitHub [150] repository. B) As the model deepens, it abstracts higher-level features from prior 
feature maps. While radiologists can often detect patterns in low-level features, convolutions can detect elusive patterns in the high-level features, one of the driving 
forces behind CAD. C) A sample loss function plot that shows how models minimize errors during each training iteration (epoch) as they learn. As the model learns, it 
updates the feature maps for the learning task. D) As the models learn by minimizing the loss, the classification accuracy increases. Best seen in color. 
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minimal mathematical operations, and thus researchers [42,46–49] 
often include it in their hidden layers. The leaky ReLU [50] improves 
upon the standard ReLU by introducing a small hyperparameter, and 
mammography researchers [47,51,52] have integrated it into their CNN 
hidden layers. 

3.4. Dropout 

Dropout [53] randomly pruning nodes in the model at each training 
epoch. The model learns to compensate for ablated neurons by randomly 
setting all the weights in nodes to zero. This random ablation reduces 
model overfitting, allowing models to generalize insights to the valida-
tion and test data with higher accuracy. In practice, researchers [30,31, 
33,48,54,55] show how this leads to robust CAD models that perform 
better on domain-specific or even cross-domain datasets. 

3.5. Batch normalization 

Batch normalization [56] reduces activation function reliance on the 
parameter scales or their initial values and induces self-regularization; it 
normalizes extremely high values within a smaller domain, and re-
searchers [31,33,35,39,40,46,57] rely on it. Batch-normalized models 
work with higher learning rates, as each layer learns a more stable 
parameter distribution at a faster pace. 

3.6. Deep CNNs with skip connections 

Skip connections link network layers to provide alternative paths for 
backpropagation. These can generate efficient models with low space 
and time complexity. ResNets [58], U-Nets [59], DenseNets [60], and 
Squeeze-Excitation Networks [61] all rely on skip connections. Fig. 3 
illustrates different examples of commonly used skip connection-based 
blocks and models. A block is a collection of repeating neural network 
layer motifs. Skip connections link earlier to later network layers, pre-
serving important information propagation through deep networks. 

3.6.1. ResNets 
He et al. [58] introduced Residual networks (ResNets): They contain 

residual blocks connected by shortcut connections; these connections 
facilitate inputs to propagate information to future layers, skipping over 
weighted activations. The skip connection allows researchers to avoid 
costly computing gradients for these layers during backpropagation, 
drastically improving performance. These residual blocks often contain 
stacked convolutional layers at their core. The outputs of the 
feed-forward layers, f(x), are added to the skip connection values, x, to 
yield a final prediction, h(x). Framing the model weight optimization 

problem in this fashion, Equation (1) below provides a method to 
determine the f(x) from x and h(x). 

f (x)= h(x) − x (1)  

3.6.2. U-Net 
The U-Net has both CNN layers in the basic building blocks and skip 

connections. First proposed by Ronneberger et al. [59], the model ar-
chitecture is different in that it contains both a contracting and 
expanding path. The contracting connections generate smaller and 
smaller feature maps before reaching a bottleneck. Upsampling then 
expands successive feature maps to an output map. The 
cross-connections in the U-Net concatenate information from the 
downsampled feature maps in the contracting path to the corresponding 
feature maps in the expanding path. 

3.6.3. DenseNet 
The DenseNet [60] connects each convolutional layer to every other 

layer in a feed-forward fashion. Dense blocks differ from traditional 
residual blocks in that they involve tensor concatenation rather than 
tensor addition. Not only are the previous layer’s feature maps used as 
input for the subsequent layer in the DenseNet, but the feature maps of 
all preceding layers also serve as inputs. The increased number of con-
nections has many advantages. Primarily, it promotes lower-level fea-
tures detected earlier in the network to contribute to feature spaces 
deeper in the network. 

3.7. Types of learning 

3.7.1. Supervised methods 
When there are large amounts of well-annotated data, supervised 

learning approaches are ideal. There are generally two subclasses of 
supervised learning: classifiers and regressions. Classifiers are appro-
priate when the output labels are discrete. For instance, the task of 
classifying and labeling a tumor by its type would require supervised 
methods. Most clinical tasks with labeled data worked with supervised 
learning methods where the ground truths are known. 

3.7.1.1. Transfer learning. Transfer learning reduces the necessary 
training time on domain-specific data. Models are most commonly 
trained on large, annotated datasets such as MSCOCO [62] and Image-
Net [63]. Through pretraining, CNNs can transfer learned high-level 
features from one domain to another [64]. Researchers often use a 
pretrained backbone like ResNet [65], VGGNet [58], or Inception [66], 
and fine-tune these backbones by removing hidden layers or unfreezing 
certain layers and further training on the domain dataset, among other 

Fig. 3. Different types of skip connections. A) The basic residual block adds the skip connection outputs to the hidden layer output. B) The Dense Block concatenates 
the first block’s output with each subsequent block’s output. C) The U-Net concatenates downsampled layers with the parallel upsampled layers. Gray arrows 
represent sequential connections between layers. All skip connections are shown as black arrows. Best seen in color. 
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approaches. Pretrained backbones aid CNNs in mammography because 
datasets are often limited in size. Pretraining, followed by fine-tuning, 
allows the model to detect abstract features in the domain dataset 
while also learning new domain-specific features to succeed in tasks 
ranging from asymmetry detection to calcification detection in a 
mammogram. 

3.7.2. Unsupervised methods 
When datasets are entirely unlabeled unsupervised, CNNs can still 

achieve impactful results. Tasks optimal for unsupervised learning range 
from dimensionality reduction to segmentation [67]. Autoencoders [68] 
optimize low-dimensional codings by minimizing the reconstruction 
error. Researchers often use stacked autoencoders (SAEs) in end-to-end 
machine learning approaches for deep feature extraction and segmen-
tation. Deep convolutional autoencoders consist of convolutional layers 
that encode feature maps into z. The decoder expands the bottleneck 
representation downstream to reconstruct the original image, as Fig. 4 
shows. Unsupervised semantic segmentation is extremely powerful in 
breast cancer CAD, as well-annotated datasets are sparse. 

3.7.3. Semi-supervised methods 
Researchers use semi-supervised learning when there are many un-

labeled sample instances but few labeled instances. With few “gold 
standard” heavily annotated datasets, the mammography domain is ripe 
for semi-supervised learning. 

3.7.3.1. Generative networks. Models like variational autoencoders 
(VAEs) and generative adversarial networks (GANs) succeed at data 
augmentation and sample generation [69]. Researchers [69,70] inves-
tigated their role in data augmentation for generating robust 
mammography datasets. Fig. 5 demonstrates a GAN architecture 
outline, highlighting how this network succeeds in novel image 
generation. 

Goodfellow et al. [71] first proposed GANs. The architecture consists 
of an autoencoder based generator trained to synthesize increasingly 
higher quality images. These images fool the discriminator network 
trained on ground-truth images. Fig. 2 highlights this sample generation 
method’s key conceptual points. Another important advancement in 
semi-supervised GANs is Deep Convolutional GANs (DCGANs), first 
proposed by Radford et al. [72]. These models enhance original GAN 
architecture by using batch normalization and removing fully connected 
hidden layers. 

3.7.3.2. Attention mechanism. Another increasingly popular semi- 
supervised method is incorporating attention into classifiers; attention 
is founded on the spatial transformer architecture, first proposed by 
Jaderberg et al. [73], and later refined by Wang et al. [74]. Researchers 
[75–78] are use attention modules in their architecture because it forces 

the model to focus on the necessary features in an image to make a 
decision. They choose attention-aware features based on their context to 
other feature maps in the network, greatly enhancing signal propagation 
through the network. 

More recent advances such as self-attention mechanisms [79] high-
light how input images can contextualize information with each other to 
provide additional context. Attention mechanisms are powerful in series 
data, such as slice sequences of digital breast tomosynthesis (DBT) or 
patient mammograms taken at multiple time points. 

4. Public mammography datasets 

Researchers apply techniques in our discussions on CNNs to many 
widely available mammography datasets. Table 1 summarizes the most 
commonly used public datasets, as well as critical details regarding the 
year they were published, the image format, image views (Mediolateral 
Oblique (MLO) and Craniocaudal (CC)), resolution, and annotations. 
The table includes datasets primarily with Full-Field Digital Mammo-
grams (FFDM)s, which involve electronic processing of x-rays. Addi-
tionally, Fig. 6 shows selected sample images from these datasets and 
Fig. 7 highlights dataset usage over time. 

4.1. MIAS 

The Mammographic Image Analysis Society (MIAS) [80] has more 
than 300 screening mammograms. The dataset contains annotations for 
background tissue type (dense/fatty), the abnormality present in the 
breast (masses, asymmetry), and the abnormality’s severity (benign/-
malignant). Mammograms with lesions have recorded X and Y co-
ordinates. It also contains labels regarding MCs, ADs, asymmetry, and 
healthy images. 

4.2. The DDSM 

The digital database of screening mammography (DDSM) [81] is an 
archive of over 2600 scanned film mammography studies. A subset of 
the DDSM is the curated breast imaging subset of the DDSM 
(CBIS-DDSM), and it includes well-annotated and labeled images. The 
dataset includes information related to bounding boxes for region of 
interests (ROIs), as well as detailed pathological information regarding 
breast mass type, tumor grade, and stage. The dataset consists primarily 
of scanned film-screen mammography, far behind most advanced im-
aging techniques like FFDM and DBT. 

4.3. INBreast 

The INBreast Database [82] is a collection of over 410 screening 
mammographs from more than 115 subjects. The data includes 

Fig. 4. The autoencoder’s image reconstruction still preserves important feature embeddings and compresses low-level feature maps to high-level representations. 
The light orange represents convolutional layers, dark orange is max pooling, blue is the de-convolutional layers, and purple is the soft-max layer. We partially 
generate the figure with the PlotNeuralNet GitHub [147] repository. Best seen in color. 
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information regarding abnormality types and mass contour information. 
Although openly available for download, the Universidade do Porto has 
recently stopped supporting the image database, yet it is available upon 
request. 

4.4. The BCDR 

The Breast Cancer Digital Repository (BCDR) [83] is a public dataset 
of FFDMs. Arevalo et al. [84] further contributed new images to this 
public dataset, encouraging other researchers to contribute their own 
images to open repositories. Images are available both at the cranio-
caudal view and the medio-oblique view. Researchers may access the 
images after registering on the database website. 

4.5. BancoWeb LAPIMO 

This image dataset [85] has over 1400 mammograms in the TIFF 
format. The images are collected from 320 subjects and contain a wide 
variety of lesions. The dataset contains images classified as benign, 
malignant, or healthy. 

4.6. The VICTRE trial 

The VICTRE Trial dataset [86] is entirely synthetic: A total of 2986 

subjects, with breast sizes and densities representative of an entire 
screening population, were simulated and imaged on in-silico versions of 
digital breast tomosynthesis (DBT) as a replacement for digital 
mammography (DM). The authors of the dataset have also provided 
open-source software tools on GitHub [87] to identify ROIs, convert the 
data to other formats, and insert synthetic lesions. Although the dataset 
is entirely synthetic, the authors presented their findings from an in-silico 
trial at the FDA Grand Rounds [86]. 

4.7. OPTIMAM 

The OPTIMAM [88] dataset is available upon request from the 
University of Surrey. The data is stored relationally, and researchers can 
download the data with an open-source Python package, easily plugging 
in the data into their systems for plug-and-play processing. The OPTI-
MAM database contains data from the first OPTIMAM1 project started in 
2008, and the OPTIMAM2 project started in 2013: OPTIMAM2 is one of 
the few public datasets containing annotated 3D DBT imaging. Elango-
van et al. [89] report how OPTIMAM2 also includes an image simulation 
toolbox to generate synthetic 2D-mammograms and 3D DBT images. 

5. CNNs for four mammography tasks 

With the datasets mentioned in Section 3 and others, researchers 

Fig. 5. GAN Architecture. The GAN has a generator (an autoencoder) that synthesizes images by initially sampling from a noisy distribution. This is the unsupervised 
kind of learning. In the supervised portion, a discriminator determines if this synthetic image is actually of the same class as the real, labeled image. As the 
discriminator penalizes for poor-quality synthesized images, the generator learns to produce more realistic images. 
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work to address challenging mammography tasks, including classifying 
parenchymal tissue density and identifying and classifying asymmetries, 
calcifications, and masses. Fig. 8 illustrates a breakdown of the litera-
ture’s distribution regarding these tasks since 2012. 

Addressing these tasks, researchers resolve common clinical prob-
lems such as intra- and inter-observer variability [90], low sensitivity 
[6], and high false-positive rate [5]. This section highlights select 
CNN-based CAD methods, like supervised, unsupervised, 
semi-supervised, and transfer-learning that serve as vital 
decision-support tools to help resolve many of these challenges. 

5.1. Breast density classification 

The term breast density refers to the relative amount of radiopaque 

epithelial and stromal tissue elements compared with the amount of 
radiolucent fatty elements seen in mammograms. Physicians use the 
Breast Imaging Reporting and Data System (BI-RADS) to classify breast 
composition (density) into four categories as follows: A) almost entirely 
fatty, B) scattered areas of fibroglandular density, C) heterogeneously 
dense (which may be obscure small masses), and D) extremely dense 
(which lowers the sensitivity of mammography) [91]. Over half of 
women under age 50 have dense tissue [92]. It is well established that 
sensitivity decreases with increasing density, mainly due to the over-
lapping radiopaque’s superimposition on dense, cancerous breast tissue. 
High breast density is a decisive, independent risk factor for breast 
cancer [93], and CAD models that can classify mammograms with their 
correct BI-RADs labels can improve early screening and risk assessment. 

Current advances in CNNs have replaced traditional feature 

Table 1 
Detailed information of the most commonly cited available mammography datasets. ’-’ means not available.  

Dataset Year # Imgs Format View Resln. 
(bit/pxl) 

Pros Cons Select 
Publications 

mini-MIAS 
[80] 

2003 322 .PGM MLO 8 The data can be accessed with Unix 
commands and is easy to retrieve. 

Outdated film-screen mammograms 
and lacks more modern imaging 
sources like 3D-mammography. 
Limited to the MLO view. 

[33,100,145] 

DDSM [81] 1999 10480 .LJPEG MLO, 
CC 

12, 16 Commonly cited by the literature. 
Includes both the MLO and CC views. 

Lacks an API and researchers need to 
install a special tool to retrieve 
images. 
Consists of outdated film 
mammography scans. 

[33,47,48,120, 
123,124,126, 
146] 

INBreast [82] 2011 410 . 
DICOM 

MLO, 
CC 

14 Both the MLO and CC views are 
available, and the images are widely 
cited. 

The database is now restricted; 
Researchers must contact the authors 
directly for access. 

[33,34,36,42, 
111,117,120, 
123] 

BCDR [83,84] 2012 7315 .TIFF MLO, 
CC 

8; 14 Standard format 
Precise lesion locations. 
Includes BI-RADS density annotations 
and precise mass coordinates, as well as 
detailed segmentation outlines. 
Auxiliary patient data (prior surgery, 
lesion characteristics, biopsy status) is 
also available. 

Limited to only 2D FFDM data. 
Limited in size. 

[25,99,121] 

BancoWeb 
LAPIMO 
[85] 

2010 1400 .TIFF MLO, 
CC 

12 BI-RADs density labeled. 
Contains auxiliary information (patient 
age, scanner brand, hormone 
replacement therapy status). 
Standard image format. 

Researchers need to wait for 
administrator approval. 
Limited in size. 

[145] 

VICTRE [86] 2018 217,913 . 
DICOM 

MLO, 
CC 

– Contains precise of mammographic 
lesions. 
Entirely synthetic. 

Entirely synthetic. [147] [148] 

OPTIMAM 
[88] 

2020 >1 M . 
DICOM 

MLO, 
CC 

12, 16 Extremely Large Dataset. 
Open-source API for easy image retrieval 
in Python. 

Researchers need administrator 
approval for access. 
Data only comes from patients in 
England. 

[35,132]  

Fig. 6. Select sample images we downloaded from the databases: A) A BCDR FFDM with the ground truth outlined in red. B) The DDSM FFDM (note that the masks 
are included as separate files). C) A slice from the VICTRE trial FFDM (note that the VICTRE trial is comprised of entirely synthetic data). 
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extraction with network-based methods. Mohamed et al. [32] leverage 
supervised CNNs for classifying mammography density categories in a 
private dataset. The authors work with “scattered density” or “hetero-
geneously dense” labels. The CNN-based model trained on a subset of 
internally curated images (22,000) highlights supervised CNN’s power 
to classify density. Their analysis aims to predict an image’s specific 
nominal class, as a radiologist would, instead of a blanket “dense/not 
dense” statement. The model attains high classification accuracy, with 
an area under the curve (AUC) ranging from 0.94 to 0.98. Li et al. [75] 
use dilated and attention-guided residual learning to improve the ac-
curacy of traditional CNNs. The dilated CNN increases a network’s 
receptive field while preserving the image resolution. This approach 
relies on multimodal detection, as it fuses bilateral MLO and CC views to 
extract features before inputting them into the classifier for breast 
density classification. This multimodal approach highlights a growing 
trend in CNNs to use multiple input sources for improved model per-
formance. These researchers apply this approach to a private dataset, 
and the public INBreast image repository [82]. Deng et al. [76] report 
the efficacy of SE-attention based networks with BI-RADS density clas-
sification. The authors train their model on a curated dataset of both 

MLO and CC views. Compared to the Inception-V4, ResNeXt, and Den-
seNet benchmarks, adding SE-attention blocks to these architectures 
leads to accuracy improvements from 89.97% to 92.17%, 89.64%– 
91.57%, and 89.20%–91.79%, respectively. 

Instead of performing expensive and dedicated training, researchers 
use transfer learning to extract domain-specific features. Mohamed et al. 
[32] use a pretrained AlexNet for breast density classification. Wu et al. 
[94] fine-tune deep CNNs to classify breast density, reporting a pre-
trained BI-RADs classifier achieves the best performance. 

Feature extraction with CNNs can be performed in an unsupervised 
fashion, ideally when the data is scarce or has minimal domain-specific 
knowledge. Petersen et al. [95] use denoising autoencoders (DAEs) for 
extracting features from a private dataset of mammograms and later 
compared automatic density segmentation scores with manual metrics 
such as the BI-RADS and Cumulus-like density scores. 

5.2. Breast asymmetry detection & classification 

Breast asymmetries in mammography represent unilateral deposits 
of fibroglandular tissue, not conforming to the definition of a mass. 
Physicians classify these deposits as asymmetry, focal asymmetry, global 
asymmetry, and developing asymmetry [91]. Researchers identifying 
asymmetry work to detect asymmetry’s presence and quantify its extent. 
Mathematically, researchers have defined asymmetry by relying on 
different volume calculations. Fung et al.’s [96] method, representative 
of recent approaches [97], estimates the breast volume as a cone: 

V =
1
3

πRCCRMLOHMLO (2)  

here, RCC is the radius of the CC view, RMLO is the radius of the MLO 
view, and HMLO is the breast height in the MLO view. Up to 20% of 
developing asymmetries are due to malignancy [98], representing a key 
point for researchers to investigate. 

Thus, scientists are developing CNN-based methods for breast 
asymmetry detection and classification. Zhao et al. [77] devise 
cross-view attention networks that take in four different views (left/-
right CC and left/right MLO) of a screening mammogram as input. The 
authors present bilateral attention mechanisms to fuse feature maps 
from both the right and left breast views on the DDSM [81], allowing for 
clear contrast determination independent of algebraic volume calcula-
tions. The model fuses and shares weights from all four views’ feature 
maps, and their attention mechanism follows from this feature aggre-
gation, allowing for enhanced context for bilateral symmetry detection. 

Breast tissue density is dynamic, so temporal methods harness crit-
ical context in interpreting multiple time points. Kooi et al. [30], fusing 
temporal components, combines two mammographic images at different 
time points for classifying masses. This is similar to how radiologists 
make their own decisions. Adding temporal context and analysis 
through recurrent neural networks helps the researchers understand 
how patterns in the masses change over time. The authors combine their 
temporal analysis with multi-scale patches to add additional context to 
the detected breast symmetry changes. 

Cai et al. [99] use transfer learning with a hybrid squeeze-excitation 
DenseNet model (termed SE-DenseNet). When comparing model per-
formance with pretrained and randomly initialized weights, the authors 
found that transfer learning boosted accuracy by about eight percentage 
points with a final best accuracy of 0.982. The authors first pretrain 
models on the ImageNet and the MSCOCO datasets and fine-tune one 
version on the DDSM and BCDR datasets. They report how a fine-tuned 
model outperforms purely pretrained models. Fine-tuned models 
transfer low-level features from auxiliary domains while still optimizing 
domain-specific feature maps on the domain-specific mammograms. 

Transfer learning plays an essential role in detecting asymmetry. Yu 
et al. [100] apply a fine-tuned DenseNet201 on the mini-MIAS dataset 
[80] to detect mammographic abnormalities, such as architectural 

Fig. 7. The number of papers we cite that use different public datasets over 
time. White represents time instances where datasets are not referenced, either 
because the datasets were not published during that time, or the published 
dataset lacked published implementation. Best seen in color. 

Fig. 8. Bar graph displaying the published paper distribution as a function of 
publication year and mammography task at the time of writing. Best seen 
in color. 
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distortions and asymmetry. After augmenting the data with morpho-
logical opening, binarization, and ROI selection, the authors report a 
final mean accuracy, sensitivity, and specificity of 92.73%, 94.58%, and 
91.67%, respectively. The DenseNet’s strength lies in its skip connec-
tions: by transferring information from shallower to deeper layers, skip 
connections overcome the vanishing gradient problem and fuse early 
with late-stage feature maps to preserve signals, especially in extremely 
deep networks. In 2020, Shen et al. [101] use a weak, semi-supervised 
classifier on the NYU Breast Cancer Screening Dataset to aggregate 
local and global features to make predictions for mammographic breast 
cancer screening. The authors rely on weakly-supervised object detec-
tion via a low-capacity network to locate regions of interest on the full 
mammogram before using a higher capacity supervised classifier to 
identify abnormalities using only full-image level labels. Through its 
low-capacity network, the model extracted regions of breast asymmetry. 
The former network localizes the asymmetry in an unsupervised fashion; 
the latter successfully labels it as an asymmetry. 

5.3. Calcification detection & classification 

Calcifications are deposits of calcium oxalate, calcium phosphate, or 
magnesium salts within the breast tissue that appear as white specks on 
a mammogram. Calcifications form within the ductal system, the breast 
acini, stroma, and vessels [102]. However, the mechanisms by which 
calcifications occur are not clearly understood [103]. The diagnostic 
approach to breast calcifications detected on mammography analyzes 
the morphology, distribution, and, sometimes, change over time. Based 
on such analysis, radiologists label calcifications as either benign or 
suspicious, the latter class requiring biopsy [91]. Researchers in the 
literature work on segmenting and detecting MCs because they are 
present in approximately 55% of non-palpable breast malignancies. 
They account for the detection of 85–95% of cases of ductal carcinoma 
in situ (DCIS) by screening mammography [104] and may also present in 
invasive cancers [105]. 

A common theme of combining model sub-networks and features in 
sophisticated architectures runs throughout the literature. Wang and 
Yang et al. [39] develop a contextual architecture consisting of two CNN 
based subnetworks. The first subnetwork is specific to a macroscopic 
input image, and the second focuses on smaller, microscopic dimensions 
within the former subnetwork’s macroscopic domain. The authors fuse 
the last hidden layers in the architecture to combine both networks, 
yielding a fully connected classification output layer dependent on both 
streams. When applied to a private mammography dataset, the model 
achieves a sensitivity of 0.874 compared to 0.84 from an SVM bench-
mark classifier; However, the authors omit specificity scores. Still, their 
findings show how fusing global and local features adds context to 
improve classification performance. Extending this trend in ensembling 
subnetworks, Savelli et al. [106] propose a model with four CNNs, each 
with training image scale dimensions of 12× 12, 24× 24, 48× 48, and 
96× 96, respectively. Each input dimension enlargement provides a 
broader scope for context; soft-voting fuses the four input sources to 
yield an aggregate decision. When applied to the INBreast dataset, the 
model achieves a sensitivity of 0.83 on the task compared to 0.80 with 
SVM-based methods. 

Many CNN-based algorithms for calcification detection in 2D FFDMs 
and recent developments in 3D DBT indicate a gap between 2D and 3D 
mammography data. To resolve this, Yin et al. [107] devise a scheme to 
transfer learned features from FFDMs calcification detection to DBTs. 
The authors use a hierarchical model for feature extraction with 
different input layer scales to detect calcification clusters. Before 
training, the authors compose a private dataset of 2D and 3D images, 
and later achieve comparable results when applying their feature 
extraction method to each 3D DBT frame. Samala et al. [54] feed ROI 
patches into a three-convolutional layer CNN to detect MCs in 3D DBT. 
The authors use 16 × 16 dimensional ROIs from the DBT slices to reduce 
memory constraints, yet because the ROI sample set is small, the authors 

rely on data augmentation to boost their results. Cai et al. [108] use 
transfer learning to enhance deep feature extraction for calcification 
detectors. The authors use an ImageNet-pretrained AlexNet with all 
layer weights preserved, except for the last two layers. After the authors 
fine-tune on two private datasets, the authors use the penultimate 
layer’s features for visualization with the t-distributed stochastic 
neighbor embedding (t-SNE) [109] algorithm: they observe clear clus-
tering patterns between benign and malignant samples. Interpreting 
latent coding distributions in 2-D space can help physicians and com-
puter scientists identify latent embedding clustering patterns, increasing 
result interpretability. 

Authors also implement unsupervised methods to address MC 
detection. For instance, Wang et al. [57] report how stacked autoen-
coders (SAE)s extract features as input sources for a deep classifier for 
detecting MCs. The authors first segment ROIs in an unsupervised 
manner before applying a hierarchy of SAEs to the segmented regions to 
yield latent feature maps. They then apply a SoftMax layer to the SAE to 
confirm if an anomalous region in the mammogram is a calcification. 
The model has a discriminative accuracy of 0.873 when applied to a 
private dataset from a retrospective study. 

5.4. Breast mass detection & classification 

Radiologists define a mass as a space-occupying 3D lesion observed 
in two different projections. The descriptors of a mass in mammography 
comprise shape, margins, and density [91]. For example, invasive ductal 
carcinoma (IDC) (not otherwise specified) is the most common type of 
invasive breast cancer: it typically presents as a spiculated, irregular 
mass or as a new focal asymmetry [110]. Researchers in the literature 
address classifying, segmenting, and locating masses in the image. 

Ertosun et al. [111] report a CNN-based visual search algorithm for 
localizing masses within mammograms. The model consists of two 
sub-modules: an anomaly detector, followed by a mass localizer. The 
anomaly detector classifies a mammogram containing masses or no 
masses before feeding the resulting mass-containing images into the 
localizer. These modules, trained on over 2500 images from the DDSM 
dataset, are constructed as hierarchical CNN layers. Al-Masni et al. [47] 
use the You Only Look Once (YOLO) deep network Redmon et al. [112] 
for simultaneous mass detection and classification. The YOLO method is 
a type of end-to-end learning where successive convolutional layers first 
split the image into sub-regions; the algorithm then places bounding 
boxes around important objects and class labels. After 5-fold 
cross-validation, the authors reported an overall sensitivity score of 
100% and a specificity of 94% on the INBreast dataset. Moreover, Moor 
et al. [113] apply the U-Net to segment and classify mammographic 
masses. The U-Net involves doubling the number of filters during each 
downsampling block and applying batch normalization layers for reg-
ularization and increasing the learning rate. The trained model achieves 
a sensitivity of 0.94 for mass segmentation and a sensitivity of 0.98 for 
overall image classification as either normal or containing malignant 
lesions. Sun et al. [78] implement an attention-guided dense-upsam-
pling network for mass segmentation from whole mammograms. Models 
trained on whole mammograms are efficient because they avoid the 
preprocessing step of ROI generation. Sun et al.’s model consists of 
successive encoding, upsampling, and decoding blocks. The model 
achieves a sensitivity of 85% on the DDSM dataset and 79% on the 
INBreast dataset. In another supervised-learning approach, Li et al. 
[114] report a DenseNet-II based model that uses whole mammographic 
images as input. When trained on a dataset of 2042 cases provided by 
the Shanxi Medical University, the model outperforms the pretrained 
AlexNet, VGGNet, GoogLeNet, and DenseNet-I with an overall accuracy 
of 94.55%. 

Introducing transfer learning to complex model architecture has 
yielded significant insights. Yemini et al. [43] use transfer learning with 
the Google Inception-V3 [115] architecture to generate an improved 
receiver operator curve (ROC) result when detecting masses in the 
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INBreast dataset. Lvy et al. [31] examine a shallow baseline model, 
AlexNet [26], and GoogLENet [116] to compare pretraining effects in 
combination with mass context and data augmentation for overall 
mammogram classification. The researchers pretrain AlexNet and Goo-
gLENet on the ImageNet [63] dataset before fine-tuning on the DDSM 
mammographic dataset [81]. The study findings demonstrate how a 
fine-tuned AlexNet with an accuracy of 0.90 outperforms a shallow 
baseline network with an accuracy of 0.66. Context regions around the 
masses, including 50 pixels padded around the ROI, also boost AlexNet’s 
accuracy. Chougrad et al. [33] show how fine-tuning the VGG16 [65], 
ResNet50 [58], and the Inception-V3 [115] leads to greater AUC im-
provements. The researchers perform an ablation study to iteratively 
remove the tuning layers from their networks to observe how each block 
affects model performance. After optimizing the model architecture, the 
authors achieve the greatest improvements on the DDSM and MIAS 
datasets, with AUCs of 0.99 and 0.98. Abdel Rahman et al. [117] 
demonstrate that pretrained CNNs such as modified Inception-V3 and 
ResNet50 classify tumors as either benign or cancerous in mammograms 
from the DDSM. Furthermore, Agarwal et al. [35] report a pretrained 
Faster R–CNN’s [118] success in breast cancer mass detection and 
classification. The authors are the first to benchmark CNN model per-
formance on the semi-private OPTIMAM dataset [119]. They also 
perform experiments where they pretrain on the INBreast dataset and 
then fine-tune on OPTIMAM FFDMs, highlighting how their methods 
generalize across dataset domains. The authors report an F1 score of 
0.86 for malignant masses and 0.74 for benign samples. Similarly, Ribli 
et al. [120] implement a Faster R–CNN, achieving an AUC of 0.95 on the 
INBreast dataset. They are one of the few authors to open source their 
implementation on GitHub, increasing reproducibility. The authors 
strengthen their model’s robustness by training on the DDSM dataset 
and testing on the INBreast dataset, showing domain generalizability. 

Unsupervised learning involving autoencoders is also popular, 
especially with sparse datasets. Dhungel et al. [111] devise an unsu-
pervised deep belief network that achieves a true positive rate (TPR) of 
0.96 at a false positive per image (FPPI) rate of 1.2. In later work, the 
same authors introduce bounding boxes to increase the model’s per-
formance [48]. With a private dataset and the BCDR, Becker et al. [121] 
implement a multipurpose image analysis software (ViDi Suite Version 
2.0; ViDi Systems Inc, Villaz-Saint-Pierre, Switzerland), which re-
searchers use for anomaly detection in solar panel and textile 
manufacturing. Using this same model on mammograms, the re-
searchers report how the anomaly detector achieves higher sensitivity 
scores than human readers. Moreover, the model excels at detecting 
lesions in low-density breast tissue as compared to higher density tissue. 
Al Antari et al. [122] devise a three-stage scheme to detect, segment, and 
later classify masses. The detection step is a YOLO algorithm similar to 
the one Al-Masni et al. [47] use. Later, a full-resolution Convolutional 
Network (FrCN) autoencoder trained on labeled ROIs returns the tu-
mor’s segmented mask images. Because the encoder network lacks 
subsampling and max pooling, the model preserves the original image 
resolution, only encoding it into high-level feature maps. Finally, the 
authors integrate a five-layer CNN for classifying the masses as benign or 
cancerous. 

Zhu et al. [36] apply deep multi-instance learning approaches with 
CNNs, on 2D FFDMs, and later Yousefi et al. [37] apply them to 3D DBTs, 
overcoming memory constraints that arise when working with 3D ten-
sors, as well as resolving sparse data annotation problems. Platania et al. 
[34] use pretrained CNN weights to initialize a binary classifier’s 
weights in a semi-supervised fashion. In their two-module system, the 
authors use a YOLO [112] inspired CNN to detect ROIs. The researchers 
feed the initial detector’s weights into a FFDM classifier before training 
the classifier on the entire mammogram image. After testing on the 
DDSM, the authors report an AUC score of about 92.3% and an accuracy 
of 93.5%. Shen et al. [123], apply encoders trained on the INBreast 
dataset [82], along with adversarial learning methods to detect masses 
in mammograms. The model adapts knowledge from well-annotated 

datasets to other unlabeled datasets. The adversarial learning helps 
align the latent target features from unlabeled datasets with labeled 
source domain latent features. 

Jung et al. [124] use the RetinaNet [125] model as a one-stage mass 
detector in mammography. The RetinaNet uses a focal loss function 
rather than traditional cross-entropy, placing more weight on mis-
classified objects. It excels when there is a heavy class imbalance be-
tween positive and negative samples, as is the case for pixel-based mass 
segmentation and overall image classification. Jung applies a 
semi-supervised RetinaNet based model on the INBreast dataset images, 
later reporting true positive rates of up to 0.99. Li et al. [49] expand on 
the original U-Net in the DDSM by combining a dense U-Net with 
attention gates. The U-Net’s encoding component is a dense CNN, and 
the decoder is a series of attention gates. Working with the DDSM and 
INBreast datasets, Yan et al. [126] apply auto-context [127] to the 
traditional U-Net: the auto-context makes long-range spatial context 
from lower resolution persist through training at a higher resolution. 
The researchers use two U-Nets at different image scales to determine 
how to fuse submodel outputs optimally. Using multiple resolutions, 
Lotter et al. [46] pass different-size patches along the mammogram to 
aggregate local and global features on the DDSM. The authors design a 
two-stage approach: 1) A ResNet determines if a mass or calcification is 
present in patches of different scales. 2) Then, global features are 
aggregated to determine if a mammogram is cancerous. The authors 
achieve an AUC of 0.92, and their results highlight how multi-scale 
patches, as well as global features, aggregate context and allow for ac-
curate detection. 

Researchers also implement unsupervised and semi-supervised 
techniques for mass detection and classification. Working with a pri-
vate dataset, Sun et al. [128] design a weighted graph-based scheme to 
discriminate normal from abnormal mammograms. This approach relies 
on a semi-supervised neural structured learning scheme [129], where 
the graph outputs features from both labeled and unlabeled images to 
train a deep CNN classifier. Given the heterogeneous ROI annotation 
presence in the dataset, the model still discriminates benign from ma-
lignant masses. With GANs’ popularity, Guan et al. [42] synthesize ROIs 
from DDSM mammograms with these models to boost traditional data 
augmentation, improving a CNN classifier accuracy by 3.6%. Training 
on synthetic images alone yields an overall stable performance score of 
about 64.52% compared to around 74% with organic and synthetic 
images. These preliminary results indicate GANs’ promise in CAD for 
breast cancer. 

Multimodal methods, involving fusing various modal input sources 
for a final decision, also assist in mass detection. Sharma and Preet [130] 
combine inputs from both the MLO and CC breast views for later fusion 
in their CNN-based classifier. The authors first display results from 
training on MLO and CC views separately and then demonstrate how 
fused information from both views helps the model perform accurately. 
Using 3D DBTs, Zhang et al. [131] use early and late tensor fusion with 
slices of the 3D DBT. The researchers use the entire DBT volume with 
slices, yet the model lacks 3D convolutional layers, admittedly because 
of their high computational costs; nevertheless, the authors fuse features 
from the 2D slices, still preserving information in the z axis while also 
reducing computational costs. Liang et al. [51] use a joint CNN that 
relies on both FFDM and 3D DBT, integrating both 2D and 3D CNNs for a 
classifier to classify benign and malignant mammograms. The authors 
use this 2D-3D ensemble method, composing a pretrained AlexNet as a 
backbone for feature extraction before input into their 2D and 3D con-
volutional layers. When trained on independent modalities, the model 
achieves 0.87 and 0.72 AUC on DM and DBT, respectively; when both 
mammographic images are ensembled, the new multimodal model, 
fusing data-specific features through weight-sharing, achieves an AUC of 
0.97. McKinney et al. [132] further demonstrate how a four-model 
ensemble fusion method excels at detecting both MCs and masses. The 
researchers devise different individual model architectures, using 
various image resolutions as input. They also and add and remove layers 
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between the path classifier and the top layers. The researchers again 
compare the individual model performance to an ensembled version 
comprised of the four best performing individual models, showing how 
fusion methods outperform independent classifiers. 

5.5. Challenges for the four mammography tasks 

5.5.1. Density classification 
Classifying breast density remains a challenging yet necessary task, 

as it is one of the first heuristics used by oncologists to determine risk 
status. Melnikow [133] shows that up to 22% of women have varying 
BI-RADS classifications based on the mammography machine used. 
Researchers, and more importantly, oncologists need to be confident in 
how mammograms are labeled. It is challenging to standardize CAD 
performance over varying machines; clinics now have higher-resolution 
imaging techniques, yet researchers should address device-level 
mammogram variations by generalizing their models across multiple 
datasets. Many of the papers also lack explainability: The Peterson et al. 
[95] autoencoder encodings are abstract representations of data, and 
very difficult for experienced clinicians to interpret; determining 
communication methods for CNNs in the form of clustering maps, 
ablation studies, and feature map analysis remains a challenge requiring 
further investigation. 

5.5.2. Breast asymmetry detection and classification 
Although our focus is on mammography, when investigating the 

literature, we find that most reported CNN-based asymmetry detection is 
on thermography, a clinical imaging tool absent from most clinics. We 
encourage more works specific to asymmetry detection in mammo-
grams. Technically, we note that researchers need to report what they 
define as an asymmetry for ground truth measurements. Many of the 
papers using CNNs for asymmetry detection discuss asymmetry in broad 
terms, and these publications lack explicit mathematical formalism of 
what mathematically constitutes asymmetry as ground truth. We high-
light the Zhao et al. [77] paper for fusing different imaging views to add 
more context to identifying asymmetry, and we challenge more authors 
to explore more multi-view methods. We note that most public datasets 
contain both the MLO and CC views from our discussion on datasets. 
However, we also acknowledge how most public datasets lack asym-
metry (or even breast volume) annotations. We call for papers that 
either a) provide these necessary ground-truth annotations to the data-
sets or b) present new datasets containing asymmetry annotations. 
Moreover, the literature lacks time-series analysis. Kooi et al. ’s [30] 
analysis is one of the few that examines two time points. Researchers 
need a richer analysis of time-series mammography, as oncologists 
themselves contextualize their analysis with prior imaging. 

5.5.3. Calcification detection and classification 
CAD systems first began using calcifications for breast cancer 

detection. As demonstrated by Cai et al. [108], researchers are 
improving their ability to explain convolutions’ latent representations. 
However, the community needs more interpretability in AI algorithms to 
add patient and provider trust in their models. Another challenge spe-
cific to MCs is a lack of publicly available 3D DBT datasets with explicit 
annotations. For example, although the DDSM has FFDM images anno-
tated with calcifications, it lacks annotated 3D DBT data annotated for 
calcifications. The VICTRE trial does contain DBT images with labeled 
calcification data. 

5.5.4. Mass detection and classification 
Ensemble methods are increasingly popular, and within the past 

year, using 3D CNNs for analyzing DBTs [51]. Although 3D CNNs are 
trendy, they require massive computational power, and many GPUs lack 
enough RAM to handle so many floating-point operations (FLOPs). 
Many researchers focused on DBT overcome this RAM limitation by 
slicing the 3D tensors and applying 2D CNNs to each slice [131]. 

However, 3D CNN methods show promise because they allow for 3D 
spatial analysis, allowing for full contextual feature maps that can cap-
ture an additional dimension of data and draw insights into how the 
breast tissue is in real-life. 

When reviewing the literature, we note that few researchers [36, 
120] open source their code to GitHub. Leaders both in the AI and 
medical community call for more AI papers to publish their source code 
on public repositories [134,135], and this a challenge found in the 
breast mass detection and every other mammography task. 

6. Quantitative comparison 

The CNN for mammographic CAD scope is vast; contextualizing and 
comparing currently published methods is necessary to understand 
current gold-standards in the field and specific tasks open for improve-
ment. This section compares selected authors’ reported results on a per- 
task basis. 

6.1. Density classification results 

The literature on CNNs applied to breast density classification is 
limited to datasets with the BI-RADS label. The majority of published 
literature is limited to privately collected mammogram repositories. The 
first group of rows in Table 2 detail and compare the different tech-
niques’ reported results on various data sources. The results indicate a 
shift in the past three years towards attention-based mechanisms com-
bined with CNNs, leading to improved model performance. Trends in 
increasing ROC-AUC values highlight how transfer learning improves 
attention-based models. 

6.2. Breast asymmetry detection and classification results 

Breast asymmetry detection is limited to either privately curated 
datasets, the DDSM, or the miniMIAS dataset. Table 2 shows different 
CNN-based results for this task. Examining the quantitative results from 
various methods, we note that recent papers have primarily shifted to 
reporting the ROC-AUC curves. The ROC-AUC is a more informative 
metric, as it allows readers to compare the true-positive and false- 
positive rates. Researchers have recently implemented complex CNN 
block combinations like squeeze-excitation and attention networks to 
enhance model performance. 

6.3. Calcification detection and classification results 

Calcification detection with CNNs has a more extended history than 
other tasks, with the first CNN based article published in 1995. Since 
then, researchers have devised sophisticated strategies involving multi- 
context methods and autoencoders. 

6.4. Mass detection and classification results 

Table 2 ’s results show how researchers have made improvements to 
increase mass detection sensitivity, with the highest reported sensitivity 
being 0.99. There is, however, room to make more extensive improve-
ments in the specificity of these models. The GAN-based data augmen-
tation model’s lower performance is understandable: the researchers 
test the DDSM-based synthetic images model, suggesting that future 
work should improve the GANs’ performance in data augmentation. 

With breast cancer detection, the primary interest is in the sensitivity 
(also known as the true-positive rate). Mass detection typically has a 
sensitivity rate of 0.90, and mass classification as either benign or ma-
lignant has comparable performance. Recent applications of autoen-
coders for mass segmentation merit more investigation to improve 
reported sensitivity rates. The table highlights a need for investigations 
into cross-domain transfer learning. 
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7. Approach pros and cons 

We strengthen our analysis by comparing the pros and cons of 
various reported techniques. Table 3 evaluates different approaches 
used in the literature, citing their pros and cons; it also provides refer-
ences for papers using these approaches, in case future authors want to 
benchmark their methods against published works. 

8. FDA approved devices 

Table 4 highlights all the main features of FDA-approved devices 
with underlying CNN methods for interpreting mammographs. 

8.1. PowerLook® tomo detection V2 

The FDA approved the PowerLook® software [136] for its proven 
ability to detect soft tissue densities and calcifications in 3D DBTs. The 
model segments the identified lesions for radiologists to review. This 
algorithm is one of the first commercial products to use CNNs on 3D 
rather than 2D mammography. It provides algorithmic confidence 
scores for radiologists to know which lesions merit rigorous review. 

8.2. DM-density® 

The DM-Density® tool [137] calculates percent breast density as the 
ratio of fibroglandular tissue to total breast area estimates; the model 

outputs predicted BI-RADS classifications of the tissue. This software is 
specific to classifying breast density and provides quantitative values 
related to density for radiologists to interpret before they make difficult 
diagnostic decisions. 

8.3. ProFound™ AI software V2.1 

The FDA approved the ProFound™ AI device in 2019. The program 
processes features and uses pattern recognition to identify suspicious 
breast lesions with CNNs, focusing on breast density classification and 
calcification detection tasks. 

8.4. cmTriage™ 

The FDA approved cmTriage™ [138,139] to analyze mammograms 
of at-risk patients for triage. The model uses CNN-based algorithms to 
alert radiologists on 2D FFDMs passively. It specifically classifies tissue 
density and identifies calcifications and masses. 

8.5. Transpara™ 1.6.0 

The FDA approved Transpara™ 1.6.0 [140] in 2020 as a mammo-
graphic CAD system for locating calcification groups and soft-tissue re-
gions. The model outputs scores indicating the likelihood that cancer is 
present. The software has CNNs to detect calcifications and soft tissue 
lesions: it specifically locates densities, masses, architectural distortions, 

Table 2 
Quantitative comparison of results reported by authors for density classification, and asymmetry, calcification, and mass detection and classification. ’-’ indicates the 
data point is not available.  

Mammography Task Method Spec. Sens. Acc. AUC F1 

Density Classification Unsupervised Deep Autoencoders [95] – – – 0.68 – 
Supervised Pretrained CNN on Predicting BIRADS Classes [32] – – – 0.94–0.98 – 
Transfer Learning with Deep CNN [94] – – 0.86 0.9 – 
Dilated Attention Guided CNN [75] – – – 0.97 0.87 

Asymmetry Detection and Classification SE-Attention based Classifier [76] – 0.9 0.92 – 0.9 
SE-DenseNet [99] – – 0.98 0.98 – 
DenseNet201 Transfer Learning [100] 0.92 0.95 0.93 – – 
ResNet50 with Cross-view Attention Network [77] – – – 0.86 – 
Weakly Supervised Localization [101] – – – 0.93 – 

Calcification Detection and Classification SE-DenseNet [99] – – 0.98 0.98 – 
DenseNet201 Transfer Learning [100] 0.92 0.95 0.93 – – 
Multi-scale patches [46] – – – 0.92 – 
ResNet50 with Cross-view Attention Network [77] – – – 0.86 – 
Weakly Supervised Localization [101] – – – 0.93 – 

Mass Detection and Classification Whole-image Mass Localization [111] – 0.85 0.85 – – 
GoogLeNet pretrained classifier [31] YOLO based ROI Classifier [34] – 0.93 0.93 – – 
YOLO based ROI Classifier [34] 0.93 0.94 0.95 0.92 – 
Pretrained InceptionV3 Classifier [33] – – 0.97 0.97 – 
Attention-guided Dense Upsampling segmentation [78] – 0.79 – – – 
GAN based Data Augmentation [42] – – 0.75 – – 
ResNet50-like Pretrained Tumor Classifier [117] – 0.87 0.86 – 0.87 
Deep Belief-RF Detection [146] – 0.96 – – – 
Bounding Box CNN Detection [48] – 0.95 0.95 0.91 – 
YOLO based Classifier [47] 0.94 1 0.95 0.96 – 
RetinaNet based Detector [124] – 0.95 – – – 
Pretrained InceptionV3 Classifier [33] – – 0.96 0.98 – 
Multiscale Autoencoder Segmentation [126] 0.99 0.72 – – – 
Attention-guided Upsampling Segmentation [78] – 0.85 – – – 
Adversarial Domain Transfer Learning [123] – 0.88 – 0.9 – 
DM Dream Ensemble [149] – 0.88 – 0.86, 0.90 – 
ROI patches [54] – – – 0.92 – 
Combining Handcrafted Features with CNNs [84] – – – 0.82 – 
ROI patches [54] – – – 0.92 – 
Multi-instance Learning [36] – – 0.92 0.86 – 
International Mass and Calcification classification [132] – – – 0.90, 0.74 – 
Multi-scale patches [46] – – – 0.92 – 
Faster-RCNN Detection [35] – – – – 0.74–0.84 
Faster-RCNN Detection with Cross-Domain Training [120] – – – 0.95 – 
Multi-instance Learning [36] – – 0.92 0.86 – 
Transpara™TM-Assisted Reading [141] 0.79 0.86 – 0.89 – 
Cascade Trees and CNNs [25] – 0.78 – 0.79 –  
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and asymmetries. This device is specific to FFDMs. In 2019, Rodriguez 
et al. [141] measured radiologist reading time as a function of the 
CNN-based Transpara™ CAD tool presence; the radiologist classification 
AUC was higher with the tool, yet reading time remained stagnant. 
Interestingly, the Transpara™ tool alone performs at the sole radiolo-
gist’s level, with only the technology and physician reading yielding 
significant performance gains. 

8.6. MammoScreen™ 

The MammoScreen™ software [142] uses CNN models trained on an 
extensive database of biopsy-proven breast cancer mammograms and 
healthy tissue. The device also works on FFDMs in DICOM format, 
outputting predicted lesion locations and model certainty scores. 

8.7. Densitas densityai™ 

The densitas densityai™ software [143] predicts breast density in 
FFDMs and 3D DBTs. It provides an ACR BI-RADS Atlas 5th Edition 
breast density category to assist radiologists in their diagnostic 
decisions. 

9. Open research areas & conclusion 

Throughout the literature, we note critical open areas for research. 
Transfer learning has helped to apply knowledge from larger, well- 
annotated datasets to sparser ones. However, for the breast asymmetry 
detection task, this needs more in-depth exploration. This approach 
requires additional annotated datasets, and thus future works should 
focus on generating extensive corpora. Our survey tabulates existing 
public datasets of breast images and highlights a need for public data. 
Moreover, practitioners should apply and test their methods across 
multiple datasets to validate a model’s robustness across domains. 

Throughout this paper, there is a skew in the current corpus towards 
mass detection tasks. Researchers should further apply CNN-based 
techniques to density classification and asymmetry detection and clas-
sification, which have relatively lower numbers of related publications. 
Literature related to breast mass localization and classification is limited 
to discriminating between benign and malignant masses; researchers 
should explore predicting fine-grained mass types. For instance, models 
distinguishing pre-invasive DCIS from IDC and ILC can discriminate 
between pre-cancerous and more critical lesions. Moreover, models tend 
to excel in fatty breast tissue but struggle with dense tissue; research that 
specifically addresses this gap may significantly improve CAD systems. 

GANs have revolutionized the major class imbalance problem that 
exists in mammography datasets. They generate new synthetic images of 
masses, typically less than 150 pixels in area. However, researchers 
should generate large-scale synthetic mammograms on the 1024×

1024-pixel level to target both macro- and micro-features. Across many 
papers, authors cite incomplete or very unbalanced datasets. GANs’ 
ability to generate large synthetic images may help solve this problem. 

We encourage researchers to open-source their source code or 
develop APIs for working with their models. Researchers [134,135] 
recommend open-sourcing repositories for other researchers to repro-
duce prior findings. GitHub helps disseminate software for reproduc-
ibility. Some researchers go one step further to develop application 
programming interfaces (API)s with easy access: The OPTIMAM [88] 
dataset includes a Python API, and the VICTRE [87] dataset also pro-
vides a Python API to retrieve and preprocess the data. 

Researchers should focus on their findings’ clinical implications and 
how they can communicate their findings to a medical and computa-
tional audience. Translating research insights into clinical curricula and 

Table 3 
Comparing pros and cons of select approaches.  

Approach Pros Cons Select 
References 

Multi-View 
Fusion 

Different 
mammographic 
imaging angles 
provide more context. 

Challenges arise with 
explainability, as its 
difficult to pinpoint 
what view contributes 
to the classifier. 

[38,77,130] 

Multi-Scale 
CNNs 

Aggregates context. 
Larger receptive field. 

Choosing image scales 
is often arbitrary. 

[46,106, 
107,124, 
131] 

Transfer 
Learning 

Reduces training time. 
Increases sample 
space to transfer high- 
level features across 
domains. 

Models lacking fine 
tuning tend to 
underperform. 

[31,32,43, 
94,100,108, 
123] 

Network 
Ensembling 

Ensembling forces 
each individual model 
to compensate for the 
others’ weaknesses. 

Complex model 
combinations makes it 
challenging to explain 
where a model derives 
its decision from. 

[51,132, 
146] 

Generative 
Models 

Greatly resolves data 
augmentation 
problems. 
Assists with class 
balancing datasets. 

Computationally 
expensive. 
May misrepresent true 
FFDM and DBT data. 
Needs more validation 
and experimentation. 

[42,52,69, 
70] 

Autoencoders Great for 
dimensionality 
reduction. 
Can detect salient 
features necessary for 
image reconstruction. 

Encodings lead to 
abstraction that 
requires explainable AI. 

[57,95,122] 

ResNets Skip connections 
reduce the number of 
trainable parameters. 

Non-linearity leads to 
lack of explainability. 

[46,51] 

UNet Perform well with 
small (n < 100) 
datasets. 
Skip connections 
preserve information 
from the encoder.  

It is challenging to 
understand how the 
UNet image 
transformations and 
traditional signal 
processing approaches 
(wavelets, nonlocal 
processing, etc.). 

[49,78,113, 
126] 

Recurrent 
CNNs 

Allows for time-series 
context analysis. 

Vanishing gradients. 
Accuracy diminishes 
with long sequences. 

[30] 

Deep Multi- 
Instance 

Useful for sparsely 
labeled data. 

Fails with imprecise 
instance classes. 

[36,37] 

Attention Selectively focuses on 
segments of sequential 
data. 
Enhances model 
interpretability. 

Significantly adds to 
model spatial 
complexity. 

[75–78] 

3D CNNs Allows for spatial 
context and feature 
extraction in the z 
dimension.  

Computationally 
expensive. 

[51]  

Table 4 
List of FDA approved CNN-based CAD algorithms for mammography between 
2018 and 2020.   

Trade Name 
Year 
Approved 

CAD Task FFDM DBT 

PowerLook®Tomo 
Detection 

2018 Density Classification; 
Calcification Detection 

✓  

DM-Density® 2018 Density Classification   
ProFound™ 2019 Density Classification; 

Mass Detection 
✓  

cmTriage™ 2019 Density Classification; 
Calcification Detection; 
Mass Detection  

✓ 

Transpara™ 1.6.0 2020 Density Classification; 
Asymmetry Detection; 
Calcification Detection; 
Mass Detection   

MammoScreen™ 2020 Mass Detection  ✓ 
densitas densityai™ 2020 Density Detection  ✓  
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training is necessary for the next generation of physicians [144]. For 
instance, radiologists rely on medical imaging’s temporal changes to 
make definitive diagnostic and prognostic decisions, and computational 
models and curricula on using these new tools should integrate with 
clinical expertise for optimal performance. CAD systems can assist ra-
diologists to accurately detect and diagnose breast cancer [141]. We 
need more studies demonstrating how CNN-based CAD systems perform 
in sync with a trained clinician. Radiologists can help interpret a sys-
tem’s decision to deliver better care. 

Overall, the survey highlights current trends in CNNs for mammog-
raphy by exploring concepts, datasets, and the literature. CNN-based 
CAD can work in harmony with physicians, and there are many op-
portunities open for clinical and computational innovation. 
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